A descoberta, que ainda precisa ser confirmada por novos experimentos, pode abrir caminho para o desenvolvimento de
vacinas mais eficazes
Um grupo liderado por pesquisadores da Faculdade de Medicina da Universidade
de São Paulo (FM-USP) acredita ter encontrado o mecanismo
que possibilita à variante sul-africana do SARS-CoV-2 –
também conhecida como B.1.351 – escapar dos anticorpos
gerados em infecções anteriores pela cepa ancestral do vírus.
A descoberta, que ainda precisa ser confirmada por novos experimentos, pode abrir caminho para o desenvolvimento de vacinas eficazes tanto contra a variante que emergiu na África
do Sul, já presente no Brasil, quanto a originária de Manaus
(P.1.), bem como as suas predecessoras.
O estudo, publicado na plataforma medRxiv, está em processo
de revisão por pares. Por meio de simulações computacionais,
o grupo estudou a proteína-chave do SARS-CoV-2, conhecida como spike. Ela é a responsável por se ligar ao receptor
existente nas células humanas (a proteína ACE-2) e viabilizar
a infecção.
Os resultados sugerem que uma das mutações existentes na
ponta da spike da variante sul-africana – caracterizada pela troca
do aminoácido lisina por asparagina – pode resultar na
ocorrência de um fenômeno bioquímico conhecido como glicosilação, que muda a feição da proteína viral e impede a
ligação dos anticorpos. Já na variante P.1., a lisina é substituída
por uma treonina, que não sofre glicosilação.
“No desenvolvimento de uma vacina, hoje, é preciso escolher o
que será mais eficaz contra o vírus, incluindo as variantes.
No caso do SARS-CoV-2, das três mutações que ocorrem na P.1.
e na B.1.351, duas são exatamente iguais. Portanto, é possível
que uma vacina que tenha como foco a variante sul-africana seja eficaz também contra a P.1. e contra o vírus ancestral. Mas
vacinas contra essas duas últimas provavelmente serão menos eficazes contra a variante sul-africana”, explica Keity Souza Santos, professora da FM-USP e autora correspondente do
artigo.
O trabalho é resultado de um projeto apoiado pela FAPESP e coordenado por Jorge Elias Kalil Filho, professor da FM-USP
e coordenador do Laboratório de Imunologia do Instituto do Coração (InCor), que também assina o artigo.
O grupo liderado por Kalil trabalha no desenvolvimento de uma vacina contra a Covid-19. O projeto é apoiado pela Fundação e pela Financiadora de Estudos e Projetos (Finep).
O alvo
“Trabalhos anteriores de outros grupos não conseguiram
encontrar a região específica em que os anticorpos humanos
se ligam à RBD [domínio de ligação ao receptor, na sigla em inglês], como é chamada a ponta da proteína spike que encaixa
nas células humanas. Até então eram feitas inferências.
Utilizamos uma técnica que permitiu localizar exatamente uma região predominantemente reconhecida, que chamamos de imunodominante. É a mesma em que ocorre uma das mutações
das variantes de Manaus e da África do Sul”, conta Santos.
Após identificar a região na primeira cepa do vírus, o grupo composto por pesquisadores da USP, Universidade Estadual Paulista (Unesp), Universidade Federal de São Paulo (Unifesp)
e Universidade de Salzburg, na Áustria, submeteu a sequência
de aminoácidos ao soro sanguíneo de 71 pacientes recuperados
de Covid-19 no Hospital das Clínicas da FM-USP no começo da pandemia no Brasil. Em 68% das amostras, os anticorpos
presentes no soro foram capazes de se ligar ao peptídeo
chamado de P44, presente na RBD da proteína spike.
Para entender como ocorre a ligação dos anticorpos nessa região encontrada pelos pesquisadores, foram feitas simulações computacionais. As informações da RBD das duas variantes e
do vírus ancestral foram cruzadas com a do anticorpo monoclonal REGN10933, conhecido por se ligar à região imunodominante
e, atualmente, em testes clínicos para tratamento da Covid-19.
O computador faz o que se chama de predição de neutralização,
ou seja, estima a capacidade dos anticorpos de neutralizar o
vírus.
Nas simulações, a predição de neutralização foi completa contra
o vírus ancestral e um pouco diminuída para a variante P.1.
Na variante sul-africana, contudo, houve uma queda drástica na predição de neutralização, confirmando o que havia apontado
um artigo publicado na Cell por cientistas norte-americanos
pouco antes da submissão do artigo dos brasileiros.
Para o grupo liderado pela USP, a ligação não ocorre na B.1.351 porque uma das suas mutações é justamente a troca do
aminoácido lisina por asparagina, que sofre o processo de glicosilação. Essa alteração seria, provavelmente, a responsável pela baixa estimativa de neutralização da variante sul-africana pelos anticorpos gerados a partir da infecção pela cepa original
do SARS-CoV-2. O fenômeno da glicosilação já foi observado
no vírus influenza, da gripe, mas ainda não havia sido apontado
no caso do SARS-CoV-2.
“Nas variantes P.1. e B.1.351, a mutação da RBD consiste em apenas três aminoácidos diferentes em relação à RBD do vírus ancestral. A mudança, contudo, parece ser suficiente para tornar
as variantes de Manaus e da África do Sul mais transmissíveis. Uma vacina que gere anticorpos que ataquem as duas mutações
que ambas as variantes têm em comum, mais o aminoácido glicosilado da B.1.351, provavelmente será mais eficaz”, diz Santos.
Para confirmar a hipótese, o grupo planeja agora experimentos
in vitro utilizando amostras do peptídeo P44 com a glicosilação
na asparagina. O objetivo é confirmar se os anticorpos
realmente não se ligam a esse aminoácido quando ele é glicosilado. Além disso, os pesquisadores obtiveram soro de pacientes recuperados da P.1. e pretendem confirmar se os anticorpos desses pacientes se ligam mesmo ao peptídeo P44.
Fonte: Bahia.Ba -Por André Julião, da Agência Fapesp - 20/04/2021.
0 comentários:
Postar um comentário